Computing limit linear series with infinitesimal methods

نویسنده

  • Laurent Evain
چکیده

Alexander and Hirschowitz [1] determined the Hilbert function of a generic union of fat points in a projective space when the number of fat points is much bigger than the greatest multiplicity of the fat points. Their method is based on a lemma which determines the limit of a linear system depending on fat points which approach a divisor. On the other hand, Nagata [10], in connection with its counter example to the fourteenth problem of Hilbert determined the Hilbert functionH(d) of the union of k points of the same multiplicity m in the plane up to degree d = km. We introduce a new method to determine limits of linear systems. This generalizes the result by Alexander and Hirschowitz. Our main application of this method is the conclusion of the work initiated by Nagata: we compute H(d) for all d. As a second application, we determine the generic successive collision of four fat points of the same multiplicity in the plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Infinitesimal Phase Response Curves of Oscillators in Piecewise Smooth Dynamical Systems

We derive a formula for the infinitesimal phase response curve (iPRC) of a limit cycle occurring in a piecewise smooth dynamical system satisfying a transverse flow condition. Discontinuous jumps in the iPRC can occur at the boundaries separating subdomains. When the subdomain dynamics are linear, we obtain an explicit expression for the iPRC. We present examples from cell biology (Glass networ...

متن کامل

Algorithms for Computing Limit distributions of Oscillating Systems with Finite Capacity

We address the batch arrival  systems with finite capacity under partial batch acceptance strategy where service times or rates oscillate between two forms according to the evolution of the number of customers in the system. Applying the theory of Markov regenerative processes and resorting to Markov chain embedding, we present a new algorithm for computing limit distributions of the number cus...

متن کامل

NORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS

This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...

متن کامل

Darboux Transformations, Infinitesimal Symmetries and Conservation Laws for Nonlocal Two–Dimensional Toda Lattice

The technique of Darboux transformation is applied to nonlocal partner of two– dimensional periodic An−1 Toda lattice. This system is shown to admit a representation as the compatibility conditions of direct and dual overdetermined linear systems with quantized spectral parameter. The generalization of the Darboux transformation technique on linear equations of such a kind is given. The connect...

متن کامل

Deterministic and stochastic analysis of distributed order systems using operational matrix

Phone:+82 53 810 3241, Fax: +82 53 811 3262 SUMMARY The fractional order system, which is described by the fractional order derivative and integral, has been studied in many engineering areas. Recently, the concept of fractional order has been generalized to the distributed order concept, which is a parallel connection of fractional order integrals and derivatives taken to the infinitesimal lim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004